Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Ulrich Flörke

Fachbereich Chemie und Chemietechnik,
Universität Paderborn, Warburgerstraße 100, D33098 Paderborn, Germany

Correspondence e-mail:
uf@chemie.uni-paderborn.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
R factor $=0.043$
$w R$ factor $=0.090$
Data-to-parameter ratio $=20.2$

For details of how these key indicators were

 automatically derived from the article, see http://journals.iucr.org/e.(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Heptacarbonyl- $\boldsymbol{\kappa}^{3} C, 2 \kappa^{4} C$ - $\{\mu$-dicyclohexyl[1 $\left(\eta^{5}\right)$-cyclopentadienyl]phosphine- $2 \kappa P$ \}-molybdenumrhenium(Mo-Re)

The title compound, $(\mathrm{CO})_{4} \mathrm{ReMo}(\mathrm{CO})_{3}\left\{\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}\right\}$ or $\left[\operatorname{MoRe}\left(\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{P}\right)(\mathrm{CO})_{7}\right]$, displays one of the few known unbridged $\mathrm{Re}-\mathrm{Mo}$ single bonds, with a length of 3.1307 (8) Å.

Comment

To date, only two crystal structure determinations on heterobimetallic $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{P}$ bridged complexes have been reported. These are the manganese-molybdenum compounds $(\mathrm{CO})_{4}{ }^{-}$ $\mathrm{MnMo}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)$ (Casey et al., 1982) and $(\mathrm{CO})_{4} \mathrm{MnMo}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{2} \mathrm{Et}\right)\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)$ (Doyle et al., 1992). The related rhenium-molybdenum title complex, (I) (Fig. 1), represents one of the rare examples of an unsupported Re -Mo single bond. It has a length of 3.1307 (8) A, which may be compared to that of 3.111 (2) \AA in (CO) ${ }_{5} \mathrm{Re}$ $\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{CPh}$ (Fischer et al., 1976) and 3.172 (1) or 3.188 (1) \AA in $(\mathrm{CO})_{4} L \operatorname{ReMo}(\mathrm{CO})_{3} \mathrm{Cp}$, with $L=\mathrm{CO}$ or $L=$ $\mathrm{CN}^{t} \mathrm{Bu}$, respectively (Ingham et al., 1992). According to a search of a recent release of the Cambridge Structural Database (Allen \& Kennard, 1993), most ligand-bridged Re-Mo bonds cover the range from 2.842 to $3.106 \AA$, with the exception of three $\mu-\mathrm{H} / \mu-\mathrm{P}$ bridged complexes, with $\mathrm{Re}-\mathrm{Mo}$ single-bond lengths in the range $3.136-3.199 \AA$, that are even longer than the unbridged ones. The overall geometry of the title complex resembles that of the related $\mathrm{Mn}-\mathrm{Mo}$ complexes mentioned above. The $\mathrm{Mo}-\mathrm{Re}-\mathrm{P}-X$ torsion angle is $8.8(1)^{\circ}$ (ignoring sign, $X=\mathrm{Cp}$ ring centroid) and the dihedral angle between the Cp ring plane and the $\operatorname{MoReP} X$ plane is 91.2 (2). Other relevant parameters are $\mathrm{Re}-\mathrm{P} 2.4479$ (17), $\operatorname{Mo}-X \quad 2.049$ (5) Å, $\quad \mathrm{Mo}-\operatorname{Re}-\mathrm{P} 75.09$ (4), $\quad \mathrm{Re}-\mathrm{P}-\mathrm{C} 31$ 101.10 (16) $\mathrm{Re}-\mathrm{Mo}-X 112.2$ (1) and $\mathrm{P}-X-\mathrm{Mo} 74.7$ (2) ${ }^{\circ}$.

(I)

Received 16 August 2001

Accepted 7 September 2001
Online 20 September 2001

Figure 1
The molecular structure of the title compound with H atoms omitted. Displacement ellipsoids are drawn at the 50% probability level.
compound was isolated in 18% yield and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (Lothert, 1994).

Crystal data

$\left[\operatorname{MoRe}\left(\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{P}\right)(\mathrm{CO})_{7}\right]$
$M_{r}=739.56$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=14.173$ (2) А
$b=11.146$ (2) \AA
$c=16.571$ (3) \AA
$\beta=93.82(1)^{\circ}$
$V=2611.9(8) \AA^{3}$
$Z=4$
$D_{x}=1.881 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 32
reflections
$\theta=7.3-18.6^{\circ}$
$\mu=5.21 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, orange
$0.46 \times 0.29 \times 0.10 \mathrm{~mm}$

Data collection

Bruker $P 4$ diffractometer

ω scans

Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.301, T_{\text {max }}=0.994$
6247 measured reflections
6042 independent reflections
3964 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.090$
$S=0.96$
6042 reflections
299 parameters

$$
\begin{aligned}
& \text { H-atom parameters constrained } \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0393 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.71 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.74 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left({ }^{\AA},{ }^{\circ}\right)$.
$X=\mathrm{Cp}$ ring centroid.

Re1-P1	$2.4479(17)$	Mo1-X	$2.049(5)$
Re1-Mo1	$3.1307(8)$	P1-C31	$1.811(4)$
P1-Re1-Mo1	$75.09(4)$	Re1-Mo1-X	$112.2(1)$

H atoms were refined at calculated positions riding on their attached C atoms with isotropic displacement parameters $U_{\text {eq }}(\mathrm{H})=$ $1.2 U_{\text {iso }}(\mathrm{C})$.

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: $S H E L X T L$; program(s) used to refine structure: SHELXTL; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Bruker (1996). XSCANS. Version 2.21. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Casey, C. P., Bullock, R. M., Fultz, W. C. \& Rheingold, A. L. (1982). Organometallics, 1, 1591-1596.
Doyle, M. J., Duckworth, T. J., Manojlovic Muir, L., Mays, M. J., Raithby, P. R. \& Robertson, F. J. (1992). J. Chem. Soc. Dalton Trans. pp. 2703-2714.
Fischer, E. O., Huttner, G., Lindner, T. L., Frank, A. \& Kreiß1, F. R. (1976). Angew. Chem. Int. Ed. Engl. 33, 157-158.
Ingham, W. L., Travlos, S. D., Boeyens, J. C. A., Berry, M. \& Coville, N. J. (1992). Acta Cryst. C48, 465-468.

Lothert, T. (1994). Dissertation thesis, University of Paderborn, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

